Viewing counting polynomials as Hilbert functions via Ehrhart theory
نویسندگان
چکیده
Steingrı́msson (2001) showed that the chromatic polynomial of a graph is the Hilbert function of a relative StanleyReisner ideal. We approach this result from the point of view of Ehrhart theory and give a sufficient criterion for when the Ehrhart polynomial of a given relative polytopal complex is a Hilbert function in Steingrı́msson’s sense. We use this result to establish that the modular and integral flow and tension polynomials of a graph are Hilbert functions. Résumé. Steingrı́msson (2001) a montré que le polynôme chromatique d’un graphe est la fonction de Hilbert d’un idéal relatif de Stanley-Reisner. Nous abordons ce résultat du point de vue de la théorie d’Ehrhart et donnons un critère suffisant pour que le polynôme d’Ehrhart d’un complexe polytopal relatif donné soit une fonction de Hilbert au sens de Steingrı́msson. Nous utilisons ce résultat pour établir que les polynômes de flux et de tension modulaires et intégraux d’un graphe sont des fonctions de Hilbert.
منابع مشابه
Maximal periods of (Ehrhart) quasi-polynomials
A quasi-polynomial is a function defined of the form q(k) = cd(k) k d + cd−1(k) k d−1 + · · · + c0(k), where c0, c1, . . . , cd are periodic functions in k ∈ Z. Prominent examples of quasipolynomials appear in Ehrhart’s theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj(k) for Ehrhart quasi-polynomials. For generic polyto...
متن کاملMaximal Periods of ( Ehrhart ) Quasi - Polynomials 3
A quasi-polynomial is a function defined of the form q(k) = c d (k) k d + c d−1 (k) k d−1 + · · · + c0(k), where c0, c1,. .. , c d are periodic functions in k ∈ Z. Prominent examples of quasi-polynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj (k) for Ehrhart quasi-polynomials. For generic p...
متن کامل0 M ay 2 00 7 MAXIMAL PERIODS OF ( EHRHART ) QUASI - POLYNOMIALS
A quasi-polynomial is a function defined of the form q(k) = c d (k) k d + c d−1 (k) k d−1 + · · · + c0(k), where c0, c1,. .. , c d are periodic functions in k ∈ Z. Prominent examples of quasi-polynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj (k) for Ehrhart quasi-polynomials. For generic p...
متن کاملEhrhart f*-Coefficients of Polytopal Complexes are Non-negative Integers
The Ehrhart polynomial LP of an integral polytope P counts the number of integer points in integral dilates of P . Ehrhart polynomials of polytopes are often described in terms of their Ehrhart h∗-vector (aka Ehrhart δ-vector), which is the vector of coefficients of LP with respect to a certain binomial basis and which coincides with the h-vector of a regular unimodular triangulation of P (if o...
متن کاملCounting chemical compositions using Ehrhart quasi-polynomials
To count the number of chemical compositions of a particular mass, we consider an alphabet A with a mass function which assigns a mass to each letter in A. We then compute the mass of a word (an ordered sequence of letters) by adding the masses of the constituent letters. Our main interest is to count the number of words that have a particular mass, where we ignore the order of the letters with...
متن کامل